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Scheme II 

Reaction of a Metal Alkyl with Ethylene 
as a Model for Ziegler-Natta Polymerization. 
Evidence for the Olefin Insertion Mechanism 

Sir: 

Dimerization, oligomerization, and Ziegler-Natta poly­
merization of ethylene and other olefins are among the most 
important homogeneous catalytic processes.1 It has long been 
assumed that these reactions involve insertion of olefin into the 
metal-carbon bond of an intermediate metal alkyl.2'3 Green 
and his co-workers have pointed out recently, however, that 
there are no unambiguous examples—in either early or late 
transition metal complexes—in which a well-characterized 
metal-alkyl-olefin compound has been observed to undergo 
this insertion reaction.4 This has led them to suggest an al­
ternative mechanism for apparent insertion reactions which 
involves a-elimination to form a transient carbene complex. 
In this note, we report that the well-characterized3e'5 cobalt 
complex 1 (Scheme I) reacts cleanly with ethylene, giving 
propylene and methane as products. We have carried out a 
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labeling study which demonstrates (in agreement with the 
classical view) that insertion, rather than a-elimination, is the 
critical step in the mechanism of this reaction. 

When a 0.13 M benzene-^ solution of 1 was heated under 
4 atm (5 equiv) of ethylene for 30 h at 76 0 C in a sealed NMR 
tube, the absorptions characteristic of 1 (5 4.49,0.61 ppm) and 
ethylene (5.27) were replaced by those from methane (0.22) 
and propene (1.58, CH3), as well as by a new cyclopentadienyl 
signal (5.50, 5 H) and two new multiplets at 1.11 (2 H) and 
2.09 (2 H) ppm. A complex with these absorptions can be 
isolated free of starting 1 by repeated crystallizations from 
benzene-hexane, although it slowly decomposes in solution (N2 
atmosphere, 20 0 C) with loss of ethylene. ?75-Cyclopentadi-
enylbis(triphenylphosphine)cobalt(I)6 and ethylene react 
thermally and ?j5-cyclopentadienyl(triphenylphosphine)car-
bonylcobalt(I)5a and ethylene react upon photolysis (Scheme 
I) to give NMR absorptions identical with those observed in 
the reaction of ethylene with l .Thestructureof this material 
is assigned as the new olefin complex,7 2, on the basis of these 
observations. In a quantitative experiment, heating 2 mL of 
a 0.127 M benzene solution of 1 under 11 atm (20 equiv) of 
ethylene at 54 ± 1 0 C for 121 h gave methane (91%), propene 
(84%), 2 (103%), and unreacted ethylene. No (<0.5%) propane 
was observed.8 

The observed products can be explained by either a classical 
mechanism involving insertion of ethylene into a metal-carbon 
bond (Scheme II), or by the Green-Rooney alternative in­
volving a-elimination (Scheme III). In the former, coordina­
tion of ethylene to the unsaturated intermediate A generated 
by phosphine dissociation, followed by insertion into a co­
balt-methyl bond, gives the propyl-methyl complex B. 
/3-Hydrogen elimination in B generates a hydrido-methyl-
olefin complex which reductively eliminates methane, and 
ethylene and phosphine displace propene from the initially 
formed, unsaturated, olefin complex D. In the alternative 
(Scheme III), intermediate A is converted into carbene com­
plex E by a-elimination and reductive elimination of methane. 
Addition of ethylene to the M = C bond gives metallacycle F; 
this then undergoes /3-elimination and a second reductive 
elimination, generating D which leads to 2 and propene as 
before (Scheme II). 

Because our system involves characterizable complex 1, it 
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is possible to carry out labeling experiments which clearly 
distinguish these two alternatives. This involves treatment of 
appropriately labeled 1 with labeled and unlabeled ethylene, 
and analysis of the isotopic distribution in the methane and 
propene produced. In methane formed by the insertion path­
way, three of the hydrogens derive from the initial methyl 
group and the fourth originates in the ethylene. A complete 
methyl group is also transferred to the ethylene. In the cv-eli-
mination pathway the fourth hydrogen originates on the second 
methyl group, and a methylene group is transferred to the 
ethylene. 

When W 2 | (completely deuterated phosphine and methyl 
groups) was treated with ethylene, mass spectral analysis of 
the product methane9-10 showed that it was identical with 
CD3H synthesized by quenching a portion of the CD3MgI, 
used to prepare l-d2i , with H2O. Similar analysis of the pro­
pene produced showed it to be >96% propene-a^. In a second 
experiment, reaction of l-d2i with ethylene-d4 gave 95% CD4. 
These results demonstrate that (a) the new methane hydrogen 
is derived from the ethylene and from no other hydrogen source 
in the system (cyclopentadienyl ring, solvent, phosphine) and 
(b) a complete methyl group is transferred to the ethylene. This 
clearly establishes insertion, rather than a-elimination, as the 
mechanism responsible for ethvlene methylation by complex 
1. 

It is still certainly possible that Ziegler-Natta polymer­
ization and/or other apparent insertion reactions take place 
by the «-elimination route. However, in our opinion, those in 
favor of this mechanism must now shoulder the burden of proof 
for establishing it. 
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Titanium(III) Porphyrins and Their Dioxygen Adducts 

Sir: 

There is wide current interest in the reactions of low-valent 
metalloporphyrin complexes with molecular oxygen.1 We re­
port here a convenient synthetic procedure for the isolation of 
coordinatively unsaturated titanium(III) porphyrins, some 
mechanistic implication for their autoxidation, and the sta­
bilization of a reversible titanium(IIl)-dioxygen adduct by 
immobilization in a host crystal lattice. 

Stirring a suspension OfTi(F)2(TPP)2 '3 with zinc amalgam 
in dry, oxygen-free benzene gives a pink solution from which 
the five coordinate d1 complex Ti(F)(TPP), 1, can be isolated 
as purple crystals.4-5 Hyperfine splittings in the EPR spectrum 
of 1 in CH2Cl2 at room temperature (Figure 1) indicate sub­
stantial interaction of the unpaired electron with the axial 
fluoride ligand and weaker interactions with the four equiva­
lent porphyrin nitrogens (Table I).6 Consistent with the 
presence of a vacant coordination site in 1, changes in the EPR 
and UV-visible spectra are observed upon addition of ligands 

Figure 1. Experimental (top) and simulated (bottom) EPR spectra of 
Ti(F)(TPP) in dichloromethane at 25 0C. 
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